
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 13-01

Computational and Sensitivity Aspects of Eigenvalue-Based Methods for the
Large-Scale Trust-Region Subproblem – extended version

Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2013



Copyright c© 2013 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission from Department of Applied Mathematical Analysis, Delft University of Technology, The
Netherlands.



Computational and Sensitivity Aspects of Eigenvalue-Based Methods

for the Large-Scale Trust-Region Subproblem – Extended Version

Marielba Rojas∗ Bjørn H. Fotland† Trond Steihaug‡

Abstract

The trust-region subproblem of minimizing a quadratic function subject to a norm constraint
arises in the context of trust-region methods in optimization and in the regularization of discrete
forms of ill-posed problems, including non-negative regularization by means of interior-point methods.
A class of efficient methods and software for solving large-scale trust-region subproblems is based on a
parametric-eigenvalue formulation of the subproblem. The solution of a sequence of large symmetric
eigenvalue problems is the main computation in these methods. In this work, we study the robustness
and performance of eigenvalue-based methods for the large-scale trust-region subproblem. We describe
the eigenvalue problems and their features, and discuss the computational challenges they pose as well
as some approaches to handle them. We present results from a numerical study of the sensitivity of
solutions to the trust-region subproblem to eigenproblem solutions.

1 Introduction

Consider the problem of minimizing a quadratic function subject to a norm constraint:

min 1
2
xTHx+ gTx , (1)

s.t. ‖x‖≤∆

where H is an n × n real, symmetric matrix, g is an n-dimensional vector, ∆ is a positive scalar, and
‖ · ‖ is the Euclidean norm. We assume that n is large and that matrix-vector products with H can be
efficiently computed. Optimality conditions for problem (1) are presented in Lemma 1.1 from [41].

Lemma 1.1 ([41]). A feasible vector x∗ ∈ IRn is a solution to (1) with corresponding Lagrange multiplier
λ∗ if and only if x∗, λ∗ satisfy (H − λ∗I)x∗ = −g, H − λ∗I positive semidefinite, λ∗ ≤ 0, and λ∗(∆ −
‖x∗‖) = 0.

Proof. See [41]. �
A special situation that is particularly challenging in practice is the so-called hard case defined as

follows. If δ1 is the smallest eigenvalue of H and S1 is the corresponding eigenspace, then the hard case
is present when H is indefinite, g is orthogonal to S1, and ∆ < ‖(H − δ1I)†g‖. In the hard case, the
solution to the TRS is not unique. When g ⊥ S1 this is called a potential hard-case.

Problem (1) is known in optimization as the trust-region subproblem (TRS) arising in the widely-
used, state-of-the-art trust-region methods [6]. The main computation in trust-region iterations is the
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solution of a TRS at each step. The following special case of the TRS arises in the regularization of
discrete forms of linear ill-posed problems:

min 1
2
xTATAx− (AT b)Tx , (2)

s.t. ‖x‖≤∆

with A a discretized operator and b a data vector perturbed by noise such that b is not in the range of
A. It is well known (cf. [8, 34, 37]) that (2) is equivalent to Tikhonov regularization [45, 46], with the
Lagrange multiplier associated with the norm constraint corresponding to the Tikhonov regularization
parameter. The regularization of linear problems by means of (2) requires the solution of one TRS only.
Nonlinear ill-posed problems can be solved by means of trust-region methods which require the solution
of a sequence of problems of type (2). The TRS in regularization is usually a very challenging problem
owing to the presence of high-degree singularities in the form of multiple instances of the hard case or
potential hard case (cf. [34, 37]). Moreover, constraints are often needed in order to model physical
properties. This is the case in image restoration, where solutions are arrays of pixel values of color
or light intensity which are non-negative properties. Note that the image restoration problem can be
formulated as a TRS with additional non-negativity constraints:

min 1
2
xTATAx− (AT b)Tx . (3)

s.t. ‖x‖≤∆

x≥0

The interior-point method TRUSTµ for solving (3) was proposed in [38]. The method is based on
a logarithmic barrier approach to handle the non-negativity constraints and requires the solution of a
sequence of TRS that may be ill-conditioned. The TRS solutions are used to compute dual variables
and the duality gap used in the convergence criterion, and the corresponding Lagrange multipliers are
used to update a scalar barrier parameter. Therefore, the TRS solution and associated multiplier must
be computed very accurately.

Several methods have been proposed for solving the large-scale TRS (see [6, 36] and the references
therein). In this work, we focus on eigenvalue-based techniques which include [10, 33, 35, 36, 43]. In
particular, we study computational and sensitivity issues for the LSTRS method [35, 36]. A MATLAB
software package implementing LSTRS has been in the public domain for a few years. The LSTRS
software has been successfully used or recommended in the literature in the context of optimization and
also in large-scale engineering applications (cf. [1, 2, 3, 9, 16, 17, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 50]).
TRUSTµ, which is based on LSTRS, has also been used in applications and as guideline for developing
new methods (cf. [16, 28, 48, 49]). Many of the applications rely on the efficiency and robustness of the
LSTRS method, and this fact was the main motivation for this work.

As mentioned before, the main computation at every iteration of eigenvalue-based methods for the
TRS is the solution of a parametric eigenvalue problem that may be computationally challenging, in
particular in regularization problems such as (2) and (3). Therefore, in this work we focus on computa-
tional and sensitivity aspects associated with these eigenvalue problems. The presentation is organized
as follows. In Section 2, we briefly describe eigenvalue-based TRS methods. In Section 3, we discuss the
features of the parametric eigenvalue problems arising in TRS methods, the computational challenges
they pose, and the strategies used in LSTRS to handle those challenges. In Section 4, we present a
numerical sensitivity study of LSTRS solutions with respect to the eigenproblem solutions. Section 5
contains concluding remarks.
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2 Eigenvalue-Based TRS Methods

One approach for developing large-scale methods for solving (1) is based on the following fact. It can be
shown (see [34]) that there always exists an optimal value of a scalar parameter α such that a solution x
to (1) can be computed from a solution y = (1, xT )T to

min 1
2
yTBαy

s.t. yT y≤1+∆2 (4)

eT1 y=1

where Bα =

(
α gT

g H

)
and e1 is the first canonical vector.

Notice that a solution to (4) is an eigenvector with non-zero first component corresponding to the
smallest eigenvalue of Bα. Notice also that the eigenvalues of H and Bα are related. The Cauchy Interlace
Theorem (cf. [32]) establishes that the eigenvalues of Bα interlace the eigenvalues of H. In particular, the
smallest eigenvalue of Bα is a lower bound for the smallest eigenvalue of H. This implies that solving an
eigenvalue problem for the smallest eigenvalue of Bα and a corresponding eigenvector with non-zero first
component yields x and λ that automatically satisfy the first two optimality conditions in Lemma 1.1
for any value of α.

These facts suggest designing an iteration for computing α based on the solution of eigenvalue prob-
lems for Bα. The methods in [10, 33, 35, 36, 43] propose such iterations. The semidefinite programming
approach used in [10, 33] works mainly on a primal problem switching to the dual when the hard case
is detected. The method in [43] also switches iterations in the presence of the hard case. LSTRS is a
unified iteration that incorporates all cases. The algorithm is described in Appendix A. In all of the
methods above, the main computation per iteration is the solution of an eigenvalue problem for an eigen-
pair associated with the smallest eigenvalue of Bα. In LSTRS, an additional eigenpair (corresponding
to another eigenvalue) is needed. In both families of methods, the eigenpairs are used to update α by
means of rational interpolation and similar safeguarding strategies are used to ensure global convergence
of the iteration. We refer the reader to [10, 33, 35, 36] for more details about the theory and computa-
tional aspects of this kind of TRS methods. We discuss the features and challenges associated with the
eigenvalue computation in Section 3.

3 Eigenvalue Problems in TRS Methods

We consider the parametric eigenvalue problem:(
αk gT

g H

)(
ν
u

)
= λ

(
ν
u

)
(5)

with H, g as above, and αk a real parameter that is iteratively updated such that {αk} is a convergent
sequence. As before, we assume that H is large, that it might not be explicitly available, and that
matrix-vector products with H can be efficiently computed. We are interested in solving (5) for the
algebraically smallest eigenvalue and a corresponding eigenvector with non-zero first component.

Several methods exist for the efficient solution of large-scale symmetric eigenvalue problems such
as (5). We mention three approaches: the Implicitly Restarted Lanczos Method (IRLM) [24, 42], the
Nonlinear Lanczos (Arnoldi) Method (NLLM) [47], and the Jacobi-Davidson Method [40]. All methods
are matrix-free in the sense that they rely on matrix-vector multiplications only. The Jacobi-Davidson
method is similar to the NLLM. Both the IRLM and the NLLM have been successfully used in the
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context of LSTRS and of [10, 33]. The performance of the Jacobi-Davidson method in the context of
trust-region methods is yet to be studied.

To efficiently solve problems of type (5) arising in TRS methods, an eigensolver must be able to handle
the special features of these problems. Some of the computational issues associated with the solution of
the eigenproblems, along with the strategies used in LSTRS, are discussed in Sections 3.1 through 3.3.

3.1 Eigenvalues close to zero

The solution of (5) is particularly challenging for methods based on matrix-vector multiplications when
the eigenvalues of interest are close to zero. In this case, every matrix-vector product will annihilate
components of the resulting vector precisely in the desired directions. In regularization, it is often the
case that the eigenvalues of interest are close to zero.

In [36], this situation is handled by means of a Tchebyshev Spectral Transformation. Namely, we
construct a Tchebyshev polynomial T that is as large as possible on λ1 and as small as possible on an
interval containing the remaining eigenvalues of Bα. We then compute the eigenvalues of T (Bα) instead
of the eigenvalues of Bα. In LSTRS, a polynomial of degree ten is used. Hence, the number of matrix-
vector products increases accordingly. However, the convergence of the IRLM is usually enhanced in
this way and in the context of LSTRS for regularization this is often the only way to handle certain
challenging ill-posed problems (cf. [37]). After convergence, the eigenvalues of Bα are recovered via
Rayleigh quotients with the converged eigenvectors. No special strategy is used to handle this case when
the NLLM is used as eigensolver.

3.2 Clustered eigenvalues

In regularization problems, the singular values of A are usually clustered and very close to zero with no
apparent gap. The eigenvalues of H = ATA inherit this feature. The interlacing properties discussed
in Section 2 imply that if the smallest q eigenvalues of H are small and clustered then, eigenvalues 2
through q of Bα will also be small and clustered.

The situation for λ1, the smallest eigenvalue of Bα, is as follows. Recall that λ1 is a lower bound
for δ1, the smallest eigenvalue of H. The distance between λ1 and δ1 depends on the value of α, which
in turn depends on the value of ∆. For values of ∆ smaller than a certain critical value, the smallest
eigenvalue of Bα is well-separated from the rest and Lanczos-type methods can compute it very efficiently.
For larger values of ∆, λ1 is well-separated from δ1 only at early (outer) iterations of LSTRS. As the
process converges (and αk approaches the optimal value), λ1 gets closer to δ1 and, in regularization, to the
cluster. Figure 1 illustrates this situation for a test problem from [14]. The figure shows the eigenvalues
of H and Bα for the optimal value of α, for three trust-region subproblems differing only in the value of
∆. We can observe that for ∆ small (top plot), λ1 is well separated from δ1. Increasing ∆ makes the gap
between λ1 and δ1 decrease (middle plot). For large ∆, λ1 and δ1 are indistinguishable (bottom plot).

It is often the case in regularization that ∆ exceeds the critical value that leads to the cluster situation.
In practice, this often means that the number of vectors required by the IRLM or by the NLLM must
be increased. This is the only strategy followed at this moment in LSTRS.

3.3 Efficiency

We now discuss the performance of LSTRS in terms of the number of matrix-vector products (MVP).
Comparisons of LSTRS with other state-of-the-art methods for large-scale trust-region subproblems
seem to indicate an advantage for LSTRS [36], especially for regularization problems. This was to be
expected since LSTRS was designed with focus on this kind of problems. Recently [23], significant
reductions in the number of MVP have been obtained at a moderate cost in storage by means of the
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Figure 1: Eigenvalues of H (dot) and Bα (circle) for different values of ∆ (and α∗). Problem heat
from [14].

NLLM. Preliminary results in [23] indicate that the performance of [10, 33] can also improve significantly
by using the NLLM. We expect that further improvements are possible, for example, by incorporating
preconditioning. This is the subject of current research.

4 Sensitivity of TRS solutions: a numerical study

In TRS methods such as LSTRS, which are based on the solution of parametric eigenvalue problems
of type (5), the eigenvalue problems are embedded in an outer iteration (see Appendix A, Figure 6).
Hence, a relevant question is how accurate the eigenvalue problems must be solved in order for the outer
iteration to converge. Note that theoretical convergence is not an issue in LSTRS, since both global and
local superlinear convergence are proven features (cf. [35]). However, the practical convergence speed is
more interesting for practitioners. Ideally, we would like to solve the eigenvalue problems to the lowest
accuracy (and hence at the lowest cost) required to maintain fast (practical) convergence of the outer
iteration. This issue is particularly relevant in the large-scale case in which iterative (inexact) methods
must be used to solve the eigenvalue problems.

In this section, we present a numerical study designed to investigate how sensitive the trust-region
solution is to random perturbations of exact eigenpairs. The sensitivity properties of the solution would
indicate if the eigenproblems must be solved very accurately or not. We also investigate the effect of
eigenpair perturbations on the performance of LSTRS. Our study is an extension of the one presented
in [11]. Related numerical investigations involving random perturbations can be found in [7, 12, 13, 27, 44].
The remainder of this section is organized as follows. We describe the test problems in Section 4.1 and
the experiments in Section 4.2. We present and discuss the results in sections 4.3 and 4.4, respectively.
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4.1 Test problems

We used two kinds of test problems in our study: general TRS of type (1) and regularization problems
of type (2). The two non-regularization problems had an indefinite Hessian. Additionally, the potential
hard case was enforced on one of them. For the regularization problems, the matrix A was an m × n
matrix; b was an m-dimensional vector such that b = btrue + s, with btrue = Axtrue; xtrue was the (true)
solution to the inverse problem; and s was a vector of Gaussian noise. The problems were generated
with routines from the test set [14], which provided A, b, and xtrue. The set used consisted of a small
model regularization problem, two problems with different degrees of ill posedness and with a rectangular
matrix A, and an image restoration problem of size 65536. For the image restoration problem, b and
xtrue were black and white photographs. Note that regularization problems were the main focus of the
study since, as mentioned before, they usually yield very difficult TRS. In all problems, the trust-region
radius ∆ was chosen so that the (original, unperturbed) problem had a single boundary solution.

In sections 4.1.1 and 4.1.2, we describe the two non-regularization problems. Sections 4.1.3 through
4.1.5 contain a description of the regularization problems. A summary of the problems and their main
features is presented in Section 4.1.6.

4.1.1 Problem laplacian: a shifted Laplacian problem

In this problem, H = L − 5I, with L the standard 2-D discrete Laplacian on the unit square based on
a 5-point stencil with equally-spaced mesh points. The dimension of the problem was n = 1024. The
trust-region radius was fixed at ∆ = 100. The vector g was randomly generated with entries uniformly
distributed on (0, 1). A uniform noise vector of norm 10−8 was added to g.

4.1.2 Problem udut: UDUT problem

In this problem, the Hessian matrix was defined as H = UDUT with D a diagonal matrix with elements
d1, . . . , dn, and U = I − 2uuT with uTu = 1. The dimension of the problem was n = 1000. The elements
of D were randomly generated with a uniform distribution on (−5, 5), then sorted in nondecreasing order
and d1 was set to −5. Both vectors u and g were randomly generated with entries selected from a uniform
distribution on (−0.5, 0.5). The vector u was normalized to have unit length.

Note that the eigenvectors of H are of the form vi = ei− 2uui, i = 1, . . . , n, with ei the ith canonical
vector and ui the ith component of the vector u. The vector g was orthogonalized against v1 = e1−2uu1,
and a noise vector of norm 10−2 was added to g. Finally, g was normalized to have unit norm. The trust-
region radius ∆ was chosen as follows. We first computed xmin = −(H − d1I)†g and ∆min = ‖xmin‖,
and then set ∆ = 0.1∆min.

4.1.3 Problem shaw: instrument design

This test problem is a small model problem obtained by means of quadrature rules applied to a Fredholm
integral equation of the first kind. The problem arises in instrument design and was first introduced in
[39]. Problem shaw possesses features of both rank-deficient and ill-posed problems with 80% of the
singular values of the order of machine precision but with a clear gap between the largest singular values
and the rest. The dimension of the matrix A was 100× 100. The TRS was of dimension 100. The noise
level in the vector s mentioned above was 10−2. The trust-region radius was ∆ = 9.5 < ‖xtrue‖.

4.1.4 Problems heat, mild and heat, severe: inverse heat equation

This problem is a discretized version of the inverse heat equation. The problem arises, for example, in the
inverse heat conduction problem of determining the temperature on the surface of a body from transient
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measurements of the temperature at a fixed location in the interior [4]. The equation is a Volterra integral
equation

γ(y) =

∫ y

0
K(y, t)φ(t)dt, 0 ≤ y ≤ 1,

where K(y, t) = k(y − t), with k(t) = t−3/2

2κ
√
π

exp
(
− 1

4κ2t

)
. The parameter κ controls the degree of ill

posedness.
We performed experiments with heat, mild, a mildly ill-posed problem (κ = 5) and heat, severe,

a severely ill-posed problem (κ = 1). To generate the discrete problems, we used a modified version
of routine heat from [14] that can generate rectangular problems. The dimension of the matrix A was
m × n, with m = 2000 and n = 1000. The corresponding TRS was of dimension n = 1000. In order to
generate more difficult TRS, no noise was added to the vector b (cf. [34, 37]). For this problem, 20% of
the singular values of the matrix A, and therefore of the eigenvalues of the Hessian ATA, were zero to
working precision. There was no gap in the singular spectrum.

4.1.5 Problem paris: an image restoration problem

In image restoration, we want to recover an image from blurred and noisy data. This is a regularization
problem in which the coefficient matrix A represents the blurring operator and the data vector b contains
a vector version of a degraded image. In our study, the matrix A was generated with the routine blur
from [14]. The original image xtrue was a vector version of a black and white photograph of an art gallery
in Paris. The noise level in the vector s was 10−2 and ∆ = 0.95‖xtrue‖. The dimension of the image was
256×256, the dimension of A was 65536×65536, and the dimension of the resulting TRS was n = 65536.

4.1.6 Summary of test problems

A summary of the test problems and their features is presented in Table 1.

Problem TRS dimension Regularization Features

laplacian 1024 no indefinite Hessian
udut 1000 no indefinite Hessian, potential hard case

shaw 100 yes square matrix, ill-posed, rank-deficient
heat, mild 1000 yes rectangular matrix, mildly ill-posed
heat, severe 1000 yes rectangular matrix, severely ill-posed
paris 65536 yes square matrix, severely ill-posed, large-scale

Table 1: Test problems.

4.2 Experiments

In this section, we describe the experiments in our numerical study. The experiments were carried out
in MATLAB R2011b on a MacBookPro with a 2.66 GHz processor and 4 GB of RAM, running Mac
OS X version 10.7.4 (Lion). The floating-point arithmetic was IEEE standard double precision with
machine precision 2−52 ≈ 2.2204 × 10−16. We performed two kinds of experiments to investigate the
relationship between the inner iteration (eigensolver) and the outer iteration (main iteration) of LSTRS.
For this purpose, we solved several instances of problems (1) and (2) using settings chosen to favor
boundary solutions for the TRS. The specific settings can be found in Appendix B. The following three
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eigensolvers, which are available in LSTRS, were tested: eig (QR method), eigs (MATLAB’s interface
to ARPACK [24]), and tcheigs (eigs combined with a Tchebyshev spectral transformation).

Note that not all eigensolvers were used for all problems. For instance, the non-regularization problems
were not ill-posed and neither the Hessian nor the bordered matrix had eigenvalues close to zero. For
this reason, it was not necessary to use the Tchebyshev transformation and therefore, only the two
eigensolvers eig and eigs were used in this case. All eigensolvers could be used for the regularization
problems of medium size. For the large-scale problem paris, only tcheigs could be used.

The first experiment aimed to study the effect on the accuracy of a TRS solution of random pertur-
bations in either the eigenvalue or the eigenvector. The perturbations were used to simulate the errors
that an iterative method would introduce. Note that the goal of the experiment was not to simulate
roundoff error, but rather the approximation error incurred when an exact computation (within working
precision) is replaced by an inexact one. In our study, exact eigenvalues and eigenvectors were computed
with MATLAB’s routine eig (QR method). Note that owing to memory limitations, this experiment
could not be performed on the large-scale problem paris.

The second experiment sought to simulate the solution of the eigenproblems to different accuracy
by means of random perturbations. In this case, the perturbations were introduced in the eigenvalue or
eigenvector computed with an inexact eigensolver. In our study, the inexact eigensolvers were eigs and
tcheigs.

In both experiments, at each LSTRS iteration, the eigenvalue problem was solved and then either
the eigenvalue or the eigenvector was perturbed. In both cases, absolute and relative perturbations were
used as well as two distributions (uniform and Gaussian). No further assumptions were made on the
stochastic properties of the perturbations, as they might not be valid in general (cf. [5, 15, 27]). The
perturbations were generated in the following way.

Eigenvalue perturbations. Given an (unperturbed) eigenvalue λu and a perturbation level ε ∈ (0, 1),
a perturbed eigenvalue λp was constructed as follows:

λp = λu + ερ, for absolute perturbations

λp = λu(1 + ερ), for relative perturbations

where ρ was a random number in (−1/2, 1/2) for uniform distribution and in (−1, 1) for Gaussian.
Eigenvector perturbations. Given an (unperturbed) eigenvector yu and a perturbation level ε ∈ (0, 1),

a perturbed eigenvector yp was constructed as follows:

yp = yu + ερr, for absolute perturbations

yp = yu × (e+ ερr), for relative perturbations

with ρ a random number in (−1/2, 1/2) for uniform distribution and in (−1, 1) for Gaussian; e the vector
of all ones; and × denoting entry-wise multiplication. The vector r was a fixed random vector normalized
such that ‖r‖ = 1 and whose entries had uniform distribution in (0, 1) if ρ was uniformly distributed, or
Gaussian distribution if ρ was Gaussian.

For each type of perturbation (eigenvalue and eigenvector, absolute and relative, uniform and Gaus-
sian), we ran 100 examples corresponding to ρ = ρi, i = 1, · · · , 100 with ρi’s sorted in increasing order.
We used the following values for ε: 10−5, 10−4, 10−3, 10−2, and 10−1.

4.3 Results

In this section, we present the results from our numerical study. Results for the first experiment corre-
spond to the perturbation level that best simulated the approximation error introduced by an inexact
eigensolver. For this experiment, similar results were observed for all kinds of perturbations (uniform
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and Gaussian, absolute and relative). Results for the second experiment correspond to the problem and
perturbation level and kind (uniform or Gaussian, absolute or relative) for which the worst outcome was
observed in terms of accuracy of the solutions. For this experiment, the performance results are averaged
over the number of examples (100). Note that for those problems in which noise was present, the results
correspond to a fixed noise vector. Experiments with other noise vectors yielded similar results. In the
remainder of the paper, xp and xu denote the solutions computed by LSTRS using perturbed and un-

perturbed eigenvalues (or eigenvectors), respectively. Ep denotes the relative error
‖xp−xu‖
‖xu‖ . We present

results of the first and second experiments in sections 4.3.1 and 4.3.2, respectively. Results for the more
realistic large-scale image restoration problem paris are presented separately in Section 4.3.3.

4.3.1 First Experiment

Eigenvalue perturbations. Figure 2 shows results for problem shaw, ε = 10−2, and absolute perturbations
with uniform distribution. Note that this is equivalent to relative perturbations with a perturbation level
of order one. To see this, put λu + εAρ = λu(1 + εRρ), fix either εA (perturbation level for absolute
approach) or εR (perturbation level for relative approach), and solve for the other. In plot (a), we
can observe an apparent linear behavior of ‖xp‖ with respect to the perturbations. Plot (b) shows the
difference between ‖xp‖ and ‖xu‖. In plot (c), we show the relative error Ep together with the relative
error in xinex (a solution computed by LSTRS using eigs as eigensolver) with respect to xu. This plot
shows that the relative error in xp is of the same order as the relative error in xinex. Thus indicating that,
for this perturbation level ε, the random perturbations seem to accurately simulate the approximation
error introduced by an inexact eigensolver. Similar results were obtained for all the test problems for
which this experiment was performed, although the perturbation level that simulated the relative error
in xinex was problem-dependent: 10−3 for laplacian, 10−5 for udut, 10−4 for heat, mild, and 10−5 for
heat, severe.

(a) (b) (c)

Figure 2: Eigenvalue perturbations. (a) ‖xp‖ (dotted) and ‖xu‖ (solid); (b) | ‖xu‖−‖xp‖ | in logarithmic
scale; (c) relative errors ‖xp − xu‖/‖xu‖ (dotted) and ‖xinex − xu‖/‖xu‖ (solid) in logarithmic scale. On
the x-axis, perturbations.

Eigenvector perturbations. Similar results to the ones obtained for eigenvalue perturbations were
obtained for all the test problems when eigenvector perturbations were used. Only the perturbation
level that simulated the relative error in xinex was different (and again problem-dependent): 10−5 for
shaw, 10−4 for laplacian and udut, and 10−5 for heat, mild and heat, severe. Note that the same
experiment was performed using different normalized random vectors to generate the perturbations and
a similar behavior was observed in this case, although a larger number of examples (500 instead of 100)
was needed to expose the trends.
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4.3.2 Second Experiment

We now present an overview of the results of the second experiment. Figure 3 shows the behavior
in accuracy (max Ep) and performance in terms of matrix-vector products (MVP) for problem heat,
severe, when eigenvalue or eigenvector perturbations were introduced. The plots were generated from
the data in Table 7, Appendix C. Detailed results for all the test problems can be found in Appendix C.

Eigenvalue perturbations. For most problems, we observed that the accuracy was overall equal to
or higher than the perturbation level. The only exceptions were heat, severe (the severely ill-posed
problem) and udut. For heat, severe, lower accuracy was obtained for the three smaller perturbations,
while accuracy of the same order was obtained for the two largest perturbations. As it will be discussed
later in this section, an improvement in accuracy for the two largest perturbation levels was also ob-
served when eigenvector perturbations were used. The MVP remained the same for the three smallest
perturbations but increased to 15% and 20% (with respect to the results for unperturbed eigenvalues),
respectively, for the two largest. A similar behavior was observed for problem udut.

Eigenvector perturbations. For most problems, we observed that the accuracy was overall of the same
order as or higher than the perturbation level (although in general lower than for eigenvalue pertur-
bations), and that eigenvector perturbations had a bigger impact on both accuracy and performance
than eigenvalue perturbations. The only exceptions were again heat, severe and udut. For heat, se-
vere, we obtained better accuracy than for eigenvalue perturbations for the two smallest perturbations.
Performance remained equal or similar to the unperturbed case for the two smallest perturbation levels,
improved by 2% and 16% for the third and fourth largest perturbation levels, and increased for the largest
level. This behavior was more marked for problem udut, where an improvement in performance of ap-
proximately 19% was observed for all perturbation levels except the largest for which an improvement of
13% was obtained. Note that in both cases the unperturbed problems were very close to the hard case.
In problem udut, the potential hard case was artificially enforced and it would seem that our choice of
∆ = 0.1∆min was not large enough to avoid the hard-case. Problem heat, severe is severely ill-posed
and in this case, several of the eigenvectors corresponding to the smallest eigenvalue of the Hessian are
orthogonal to g. In this situation, the first component of the relevant eigenvector is very small and the
adjustment procedure for α (see Appendix A, Figure 7) is triggered. As a consequence, the LSTRS it-
erations may be expensive. In both cases, the perturbations that we introduced in the eigenvectors seem
to have had the effect of moving the LSTRS iterates away from the hard case rendering the problems
easier to solve. This is similar to the positive effect that noise in the data has on the properties of the
TRS (cf. [37]).

Figure 3: Left, y-axis: max Ep in logarithmic scale for eigenvalue perturbations (dot) and eigenvector
perturbations (circle). Right, y-axis: ratio (MVP xp)/(MVP xu) for eigenvalue perturbations (dark) and
eigenvector perturbations (clear). On the x-axis, perturbation level. Problem heat, severe, eigensolver
tcheigs.
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4.3.3 An image restoration problem

In this section, we present results of the sensitivity study for problem paris, a large-scale image restoration
problem. Since the problem was large and since the matrix A was very ill-conditioned with a large cluster
of singular values that were numerically zero, only the eigensolver tcheigs could be used in this case.
Therefore, only the second experiment could be performed on this problem. The results of the experiment
are shown in Figure 4. The plots are based on the data in Table 8, Appendix C.

Figure 4: Left, y-axis: max Ep in logarithmic scale for eigenvalue perturbations (dot) and eigenvector
perturbations (circle). Right, y-axis: ratio (MVP xp)/(MVP xu) for eigenvalue perturbations (dark)
and eigenvector perturbations (clear). On the x-axis, perturbation level. Problem paris, eigensolver
tcheigs.

We observe that for both eigenvalue and eigenvector perturbations, the accuracy with respect to
the solution of the unperturbed problem is not high. The solution seems to be very sensitive to small
perturbations in the eigenpairs. However, the accuracy is of the same order for all perturbations, including
large ones, except for the largest eigenvector perturbation. As mentioned above, this problem is very
ill-conditioned and therefore, the same comments as for heat, severe apply here, in particular, regarding
eigenvector perturbations (see Section 4.3.2). For both perturbations, the MVP increased by between
80% and two times with respect to the unperturbed case. However, for eigenvector perturbations, large
MVP were only attained for the largest perturbations and only a minor increase was observed for the
smallest ones, whereas for eigenvalue perturbations, a large number of MVP was observed for most
perturbations.

Figure 5 shows the original and degraded images (top row) as well as three different restorations cor-
responding to unperturbed eigenpairs and to the two solutions that had maximum Ep for eigenvalue and
eigenvector perturbations (bottom row). For eigenvalues, the maximum Ep was reached at perturbation
level 10−2 and for eigenvectors, at 10−1. Note that the solutions corresponding to perturbed eigenpairs
have approximately the same relative error with respect to xtrue, as the solution corresponding to un-
perturbed ones. The quality of the restored image is noticeably lower for the eigenvector perturbation
that yielded the maximum Ep. Note that in all cases, the quality of the restoration could be improved
by choosing a larger value for ∆. Here, we used ∆ < ‖xtrue‖, a value that yields boundary solutions but
that is smaller than the optimal one.

4.4 Discussion

The results of the first experiment show that the norm of the solution to perturbed problems increases
linearly with the perturbation and remains close to the norm of the solution to the unperturbed problem.
Moreover, we could always identify a perturbation level that simulated the error introduced by one of our
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Original Degraded

Unperturbed Eigenvalue Perturbations Eigenvector Perturbations

Figure 5: Top row: original and data images. Bottom row: solutions corresponding to unperturbed
eigenpairs, to max Ep for eigenvalue perturbations, and to max Ep for eigenvector perturbations. The
relative errors with respect to xtrue are 0.1057, 0.1325, and 0.1694, respectively.
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inexact eigensolvers. Therefore, these results seem to indicate that the effect of inexact computations in
the inner iteration of LSTRS is limited.

The results of the second experiment show several interesting aspects of the LSTRS method. We
observed that for most problems the solution was more sensitive to perturbations in the eigenvectors
than to perturbations in the eigenvalues. This was to be expected since the eigenvector influences the
TRS solution in a more direct way than the eigenvalue. Namely, the last n (normalized) components of
the eigenvector form the approximate solution to problem (1) at each iteration of LSTRS. In particular,
in the last LSTRS iteration the last n (normalized) components of the eigenvector form the solution.
However, note that the maximum relative error with respect to the solution of the unperturbed problem
was of the same or lower order than the perturbation level for all kinds of perturbations. Only for the
very ill-posed problems the behavior was different, with the relative error being one order larger than the
perturbation level or, in the case of our large-scale test problem, remaining the same for all perturbation
levels.

We also observed (a sometimes dramatic) deterioration in performance when perturbations were
introduced, in particular when eigenvector perturbations were used in combination with the iterative
eigensolvers on problems that were not very ill-posed or did not have singularities. Note that, since the
iterates depend so closely on the eigenvector, by introducing perturbations in that eigenvector, we are
effectively changing the execution “path” of the algorithm. It is thus most remarkable and a strong indi-
cation of robustness, that even with this deterioration in performance and the fact that the safeguarding
mechanisms were rarely triggered in these experiments, the final solution does not deviate excessively
from the unperturbed solution.

An interesting behavior was observed for problems where the hard case or the potential hard case was
present. In those cases, eigenvector perturbations seem to have had the effect of avoiding the singularities
and, as a result, performance actually improved. Since the final solutions remained close to the solutions
to the unperturbed problems, this would indicate that especially for these very difficult problems it may
be advisable to solve the eigenproblems to low accuracy since the perturbation introduced by the inexact
solver could be beneficial in those cases.

5 Concluding Remarks

We considered computational and sensitivity issues arising in eigenvalue-based methods for the large-
scale trust-region subproblem using the LSTRS method as a case study. We described the eigenvalue
problems and their relevant features for computational purposes, emphasizing challenges and strategies
for dealing with them. A main aspect of this work is a numerical sensitivity study of the TRS solution
with respect to the eigenvalue solutions. The results of this study seem to indicate that LSTRS is
stable with respect to eigenpair perturbations and that the eigenvalue problems can be solved to low
accuracy. This is especially the case for difficult problems such as regularization problems, where the
hard case is present. Current and future work in this area include the use of preconditioning, further
experiments concerning sensitivity, and the design of strategies to guarantee the computation of all the
desired eigenpairs and of at least one eigenvector with the desired structure. A similar study for other
eigenvalue-based methods for the large-scale TRS such as [10, 33] is yet to be done.
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A The LSTRS Method

In this section, we present the main components of the LSTRS algorithm from [35]: the main iteration
(Figure 6), the procedure for adjusting the parameter α (Figure 7), and the procedure for safeguarding α
(Figure 8). The 1- and 2-point rational (1D) interpolation schemes are described in detail in [35]. Note
that they do not contribute significantly to the iteration cost. The solution of the parametric eigenvalue
problem (Figure 6: lines 3 and 16, and (conditionally) line 6) is the most expensive computation at each
iteration. In all algorithms: H, g, and ∆ are as in (1), Bα is as in (4), δ1 is the smallest eigenvalue of H,
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δU is an upper bound for δ1, and λ1(α) and λi(α) denote the smallest eigenvalue and the ith eigenvalue
of Bα for any i > 1, respectively; αL and αU are lower and upper bounds for αk, respectively. Input
tolerances are described in Table 2. The stopping criterion consists of conditions for a boundary, quasi-
optimal, and interior solution, as well as for the length of the safeguarding interval for α and a maximum
number of iterations. For more details about the stopping criterion, see [35, 36] and also Table 2.

ε∆ The desired relative accuracy in the norm of the trust-region

solution. A boundary solution x satisfies |‖x‖−∆|
∆ ≤ ε∆ ·

εHC The desired accuracy of a quasi-optimal solution. If x∗ is the
true solution and x̃ is the quasi-optimal solution, then

ψ(x∗) ≤ ψ(x̃) ≤ (1− εHC)ψ(x∗), where ψ(x) = 1
2x

THx+ gTx.

εInt Used to declare the algebraically smallest eigenvalue of
Bα positive in the test for an interior solution: λ1(α) is
considered positive if λ1(α) > −εInt ·

εα The minimum relative length of the safeguarding interval for
α. The interval is too small when
|αU − αL| ≤ εα ∗max{|αL|, |αU |} ·

εν The minimum relative size of an eigenvector component.
The component ν is small when |ν| ≤ εν‖u‖/‖g‖ ·

Table 2: Tolerances for LSTRS.

B Settings for LSTRS

The settings used in the sensitivity study were the same as in [23, 36]. We include them here for
completeness. In all cases, the initial vector for the first call to eigs was v0 = (1, . . . , 1)T /

√
n+ 1.

Default values were used for the parameters that are not mentioned.

B.1 Problem laplacian

The number of vectors was 10 and 8 shifts were applied in each implicit restart. The remaining parame-
ters were as follows: epsilon.Delta = 1e-5, epsilon.HC = 1e-11, lopts.deltaU = ’mindiag’, and
lopts.alpha0 = lopts.deltaU.

B.2 Problem udut

The number of vectors was 10 and 8 shifts were applied in each implicit restart. Other parameters were
as follows: epsilon.Delta = 1e-4, epsilon.HC = 1e-10, lopts.deltaU = ’mindiag’, lopts.alpha0
= lopts.deltaU, lopts.maxeigentol = 0.2,

B.3 Problem shaw

We set epsilon.HC = 1e-16 and epsilon.Int = 0 to favor boundary solutions; and epsilon.Delta =

1e-2; lopts.max eigentol = 0.4.
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Input: H ∈ Rn×n, symmetric; g ∈ Rn; ∆ > 0; tolerances (ε∆, εHC , εInt, εν , εα).
Output: x∗, λ∗, solution to TRS and Lagrange multiplier.

1: Initialization
2: Compute δU ≥ δ1, initialize αU and α0, set k = 0
3: Compute eigenpairs {λ1(α0), (ν1, u

T
1 )T}, and {λi(α0), (νi, u

T
i )T} of Bα0

4: Initialize αL

5: repeat
6: Adjust αk using algorithm in Figure 7 (might need to compute eigenpairs)

7: Update δU = min
{
δU ,

uT1 Hu1

uT1 u1

}
8: if ‖g‖|ν1| > εν

√
1− ν1

2 then

9: Set λk = λ1(αk) and xk = u1
ν1

10: if ‖xk‖ < ∆ then αL = αk end if; if ‖xk‖ > ∆ then αU = αk end if
11: else
12: Set λk = λi(αk), xk = ui

νi
, and αU = αk

13: end if
14: Compute αk+1 by 1-point (k = 0) or 2-point interpolation scheme (see [35])
15: Safeguard αk+1 using algorithm in Figure 8 and set k = k + 1
16: Compute eigenpairs {λ1(αk), (ν1, u

T
1 )T}, and {λi(αk), (νi, u

T
i )T} of Bαk

17: until convergence

Figure 6: The LSTRS Method for solving (1).

Input: εν , εα ∈ (0, 1), αL, αU , α with α ∈ [αL, αU ],
eigenpairs {λ1(α), (ν1, u

T
1 )T} and {λi(α), (νi, u

T
i )T} of Bα

Output: α, {λ1(α), (ν1, u
T
1 )T} and {λi(α), (νi, u

T
i )T}.

1: while ‖g‖|ν1| ≤ εν
√

1− ν1
2 and ‖g‖|νi| ≤ εν

√
1− νi2

and |αU − αL| > εα max{|αL|, |αU |} do
2: αU = α; α = (αL + αU)/2
3: Compute eigenpairs {λ1(α), (ν1, u

T
1 )T} and {λi(α), (νi, u

T
i )T} of Bα

4: end while

Figure 7: Adjustment of α.
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Input: α, δU ≥ δ1, αL, αU ,
xj , λj , φj = −gTxj and φ′j = ‖xj‖2, for j = k − 1, k.

Output: α ∈ [αL, αU ].

1: if α 6∈ [αL, αU ]
2: if k = 0 then α = δU + φk + φ′k(δU − λk)
3: else if ‖xk‖ < ‖xk−1‖ then α = δU + φk + φ′k(δU − λk)
4: else α = δU + φk−1 + φ′k−1(δU − λk−1) end if
5: if α 6∈ [αL, αU ] then set α = (αL + αU)/2 end if
6: end if

Figure 8: Safeguarding of α.

B.4 Problems heat, mild and heat, severe

We set lopts.heuristics = 1; epsilon.Delta = 1e-3 and lopts.maxeigentol = 0.7 for heat, mild
and epsilon.Delta = 1e-2 and lopts.maxeigentol = 0.4 for heat, severe.

B.5 Problem paris

The settings were epsilon Delta = 1e-2 and epsilon HC = 1e-4.

C Numerical Results

This section presents the numerical results of our sensitivity study for each problem. As mentioned in
Section 4.3, the results correspond to the kind of perturbation (uniform or Gaussian, relative or absolute)
that yielded the worst results in terms of max Ep. This data was used to generate the plots in Section
4.3. In all tables, we report: the perturbation level (ε); the average number of (outer) LSTRS iterations
(IT); the average number of eigenvalue problems solved (EV); and the maximum value of the relative
error in xp with respect to xu (max Ep). For eigs and tcheigs, the average number of matrix-vector
products (MVP) is also reported.

C.1 Problem laplacian

Table 3 shows results for eigenvalue and eigenvector perturbations. For eigenvalues, the results corre-
spond to Gaussian distribution and relative perturbations. For eigenvectors, the results correspond to
Gaussian distribution and absolute perturbations. For eigenvalue perturbations, we can observe that
the solutions are close to the solution corresponding to unperturbed eigenvalues and that high accuracy
was also obtained for the largest perturbation, 10−1. Performance deteriorated at perturbation level
10−2 for both eig and eigs. For eigs, the MVP increased by a factor of approximately two and three,
respectively, for the two largest perturbations. The perturbation that simulated the approximation error
of the inexact solver eigs was 10−3. For eigenvector perturbations, the error was of the same order as
the perturbation. Performance increased for the three largest perturbations and decreased for the two
smallest. For eigs, the MVP decreased by a factor of two and then increased to approximately the
same level of the unperturbed problem. The perturbation that simulated the approximation error of the
inexact solver eigs was 10−4.
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Eigenvalue Perturbations

ε IT EV max Ep

0 5.0 5.0 0
10−5 5.0 5.0 1.09e-07
10−4 5.0 5.0 1.09e-06
10−3 5.1 5.1 8.75e-06
10−2 8.7 8.7 1.02e-05
10−1 15.5 15.5 1.03e-05

ε IT EV MVP max Ep

0 6.0 6.0 104.0 0
10−5 6.0 6.0 104.0 1.11e-07
10−4 6.0 6.0 104.0 1.10e-06
10−3 6.0 6.0 107.7 9.93e-06
10−2 10.4 10.4 210.8 9.92e-06
10−1 15.3 15.3 302.1 1.01e-05

eig eigs

Eigenvector Perturbations

ε IT EV max Ep

0 5.0 5.0 0
10−5 4.0 4.0 5.10e-05
10−4 4.0 4.0 5.38e-04
10−3 4.0 4.0 5.42e-03
10−2 5.3 5.3 2.72e-02
10−1 6.5 6.5 1.53e-01

ε IT EV MVP max Ep

0 6.0 6.0 104.0 0
10−5 4.0 4.0 55.0 5.36e-05
10−4 4.0 4.0 55.0 5.39e-04
10−3 4.0 4.0 55.1 5.45e-03
10−2 5.9 5.9 113.8 2.99e-02
10−1 5.9 5.9 111.5 1.02e-01

eig eigs

Table 3: Problem laplacian. Performance results and maximum relative error in xp with respect to xu.

C.1.1 Problem udut

Table 4 shows results for eigenvalue and eigenvector perturbations. For eigenvalues, the results correspond
to Gaussian distribution and relative perturbations. For eigenvectors, the results correspond to Gaussian
distribution and absolute perturbations. We observe that for eigenvalue perturbations, the solutions are
close to the solution corresponding to unperturbed eigenvalues, although not as close as for problem
laplacian. Observed also that relatively high accuracy was attained for most of the perturbations.
Performance deteriorated at 10−4 for both eig and eigs. For eigs, the MVP increased by a factor of
between two and three. The perturbation that simulated the approximation error of the inexact solver
eigs was 10−5. For eigenvector perturbations, the error was of the same order as the perturbation. In
this case, the number of MVP decreased for most perturbations, and was of the same order as for the
unperturbed problem for the largest perturbation. The perturbation that simulated the approximation
error of the inexact solver eigs was 10−4.

C.1.2 Problem shaw

Table 5 shows results for eigenvalue and eigenvector perturbations. As before, we observe that the solution
of the TRS based on perturbed eigenvalues remains close to the solution based on unperturbed ones for
all perturbation levels and that the maximum relative error is of lower order than the perturbation
level. Regarding performance, measured in MVP, we observe that this was essentially not affected by
the perturbations, except for the largest perturbation level, 10−1. In this case, we observe an increase in
MVP of approximately 2% for eigs and 20% for tcheigs, with respect to the unperturbed case. Also for
ε = 10−1, we observe an increase of approximately 25% in the number of iterations for all eigensolvers. For
eigenvector perturbations, we observe a similar behavior. Regarding performance, measured in MVP, we
observe the following. For the eigensolvers eig and tcheigs, performance was essentially not affected by
perturbations, except for the largest perturbation. In this case, we observe an increase of approximately
25% in the number of iterations (eig), and between 7% and 80% increase in MVP (tcheigs), with
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Eigenvalue Perturbations

ε IT EV max Ep

0 5.0 5.0 0
10−5 5.0 5.0 9.79e-05
10−4 8.4 8.4 1.04e-04
10−3 11.3 11.3 1.13e-04
10−2 13.2 13.2 1.11e-04
10−1 19.6 19.6 1.11e-04

ε IT EV MVP max Ep

0 5.0 5.0 64.0 0
10−5 5.0 5.0 63.8 8.10e-05
10−4 10.5 10.5 130.1 1.17e-03
10−3 13.8 13.8 169.4 1.90e-04
10−2 14.7 14.7 179.8 1.17e-03
10−1 15.6 15.6 190.3 1.27e-04

eig eigs

Eigenvector Perturbation

ε IT EV max Ep

0 5.0 5.0 0
10−5 4.0 4.0 9.62e-05
10−4 4.0 4.0 9.62e-04
10−3 4.0 4.0 9.62e-03
10−2 4.0 4.0 9.62e-02
10−1 4.7 4.7 7.69e-01

ε IT EV MVP max Ep

0 5.0 5.0 64.0 0
10−5 4.0 4.0 52.0 9.79e-05
10−4 4.0 4.0 52.0 9.80e-04
10−3 4.0 4.0 52.0 9.81e-03
10−2 4.3 4.3 56.1 9.59e-02
10−1 5.1 5.1 64.6 7.07e-01

eig eigs

Table 4: Problem udut. Performance results and maximum relative error in xp with respect to xu.

respect to the unperturbed case. For eigs, we observe MVP of between two and five times those of the
unperturbed case. Note also that the deterioration in performance begins at a smaller perturbation level
(10−4) than before. The mild effect of perturbations when eig and tcheigs are used as eigensolvers
can be accounted for by the fact that these eigensolvers perform very accurate calculations, whereas the
eigenpairs computed by eigs are more inexact.

Eigenvalue Perturbations

ε IT EV max Ep

0 7.0 8.0 0
10−5 7.0 8.0 4.98e-08
10−4 7.0 8.0 4.98e-07
10−3 7.0 8.0 4.98e-06
10−2 7.0 8.0 4.98e-05
10−1 8.7 9.7 2.07e-04

ε IT EV MVP max Ep

0 7.0 8.0 542.0 0
10−5 7.0 8.0 542.0 4.98e-08
10−4 7.0 8.0 542.0 4.98e-07
10−3 7.0 8.0 542.0 4.98e-06
10−2 7.0 8.0 543.0 4.98e-05
10−1 8.8 9.8 556.5 2.11e-04

ε IT EV MVP max Ep

0 7.0 8.0 564.0 0
10−5 7.0 8.0 564.0 4.98e-08
10−4 7.0 8.0 564.0 4.98e-07
10−3 7.0 8.0 564.0 4.98e-06
10−2 7.0 8.0 564.6 4.98e-05
10−1 8.8 9.8 688.2 2.11e-04

eig eigs tcheigs

Eigenvector Perturbations

ε IT EV max Ep

0 7.0 8.0 0
10−5 7.0 8.0 3.79e-06
10−4 7.0 8.0 3.79e-05
10−3 7.0 8.0 1.12e-03
10−2 7.0 8.0 1.03e-02
10−1 8.7 9.7 8.40e-02

ε IT EV MVP max Ep

0 7.0 8.0 542.0 0
10−5 7.0 8.0 542.0 6.58e-06
10−4 7.4 9.5 1270.1 2.19e-04
10−3 7.8 10.0 1436.8 1.06e-03
10−2 9.8 12.2 1962.8 5.36e-03
10−1 13.3 16.3 2844.2 8.06e-02

ε IT EV MVP max Ep

0 7.0 8.0 564.0 0
10−5 7.0 8.0 564.0 6.58e-06
10−4 7.0 8.0 564.9 6.55e-05
10−3 6.9 7.9 556.4 8.45e-04
10−2 8.3 8.6 605.4 9.84e-03
10−1 14.5 14.6 1030.5 6.56e-02

eig eigs tcheigs

Table 5: Problem shaw. Performance results and maximum relative error in xp with respect to xu.
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C.1.3 Problems heat, mild and heat, severe

Tables 6 shows results for eigenvalue and eigenvector perturbations on problem heat, mild. For eigen-
values, the results correspond to Gaussian distribution and relative perturbations. For eigenvectors, the
results correspond to Gaussian distribution and absolute perturbations. For eigenvalue perturbations, the
solutions are close to the solution corresponding to unperturbed eigenvalues, except for the two largest
perturbations. Performance remained essentially the same for all but the largest perturbation. In the
latter case, the MVP increased by approximately 22% for both eigs and tcheigs. The perturbation that
simulated the approximation error of the inexact solver eigs was 10−4. For eigenvector perturbations,
the error was of the same order as the perturbation for all eigensolvers. In this case, the increase in
MVP for eigs started at perturbation level 10−4 and was between 7% and three times larger than for
unperturbed problems. For eig and tcheigs, performance changed slightly for the largest perturbation
only. The perturbation that simulated the approximation error of the inexact solver eigs was 10−5.

Eigenvalue Perturbations

ε IT EV max Ep

0 3.0 3.0 0
10−5 3.0 3.0 3.70e-06
10−4 3.0 3.0 3.71e-05
10−3 3.0 3.0 3.80e-04
10−2 2.9 2.9 1.21e-02
10−1 3.6 3.6 1.21e-02

ε IT EV MVP max Ep

0 3.0 3.0 94.0 0
10−5 3.0 3.0 94.0 3.70e-06
10−4 3.0 3.0 94.0 3.69e-05
10−3 3.0 3.0 94.0 3.60e-04
10−2 3.0 3.0 93.5 1.21e-02
10−1 3.8 3.8 115.1 1.19e-02

ε IT EV MVP max Ep

0 3.0 3.0 419.0 0
10−5 3.0 3.0 419.0 3.70e-06
10−4 3.0 3.0 419.0 3.69e-05
10−3 3.0 3.0 419.0 3.60e-04
10−2 3.0 3.0 415.0 1.21e-02
10−1 3.8 3.8 511.9 1.19e-02

eig eigs tcheigs

Eigenvector Perturbations

ε IT EV max Ep

0 3.0 3.0 0
10−5 3.0 3.0 2.67e-05
10−4 3.0 3.0 2.67e-04
10−3 3.0 3.0 2.67e-03
10−2 3.0 3.0 2.67e-02
10−1 3.5 3.5 2.02e-01

ε IT EV MVP max Ep

0 3.0 3.0 94.0 0
10−5 3.0 3.0 94.0 2.61e-05
10−4 3.0 3.0 100.5 2.67e-04
10−3 3.0 3.0 151.9 2.67e-03
10−2 3.0 3.0 211.6 2.67e-02
10−1 3.4 3.4 251.2 2.66e-01

ε IT EV MVP max Ep

0 3.0 3.0 419.0 0
10−5 3.0 3.0 419.0 2.67e-05
10−4 3.0 3.0 419.0 2.67e-04
10−3 3.0 3.0 419.0 2.67e-03
10−2 3.0 3.0 419.0 2.67e-02
10−1 3.3 3.3 438.1 2.66e-01

eig eigs tcheigs

Table 6: Problem heat, mild. Performance results and maximum relative error in xp with respect to
xu.

Table 7 show results for eigenvalue and eigenvector perturbations on problem heat, severe. The
results correspond to Gaussian distribution and absolute perturbations. For eigenvalue perturbations,
the solutions have lower accuracy than the perturbation level. For eigs, the number of MVP increased
by between 30% and three times the cost for solving the unperturbed problem for the two largest pertur-
bations, while for tcheigs, the increase was of between 14% and 20%. The perturbation that simulated
the approximation error of the inexact solver eigs was 10−5. For eigenvector perturbations, we obtained
higher accuracy than for eigenvalue perturbations for the two smallest perturbations. The MVP actually
decreased for some of the perturbations by as much as 8% for eigs and 19% for tcheigs, while it increased
by about two times for the largest perturbation. The perturbation that simulated the approximation
error of the inexact solver eigs was 10−5.
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Eigenvalue Perturbations

ε IT EV max Ep

0 6.0 7.0 0
10−5 6.0 7.0 1.90e-04
10−4 6.0 7.0 1.90e-03
10−3 6.0 7.0 1.64e-02
10−2 7.4 8.8 2.03e-02
10−1 15.1 19.2 1.88e-02

ε IT EV MVP max Ep

0 6.0 7.0 533.0 0
10−5 6.0 7.0 533.0 1.90e-04
10−4 6.0 7.0 533.0 1.90e-03
10−3 6.0 7.0 534.3 1.64e-02
10−2 7.7 9.1 693.0 2.03e-02
10−1 15.8 20.0 1546.9 1.90e-02

ε IT EV MVP max Ep

0 9.0 10.0 797.0 0
10−5 9.0 10.0 797.0 1.77e-04
10−4 9.0 10.0 797.0 1.76e-03
10−3 9.0 10.0 799.7 1.10e-02
10−2 10.4 11.4 911.6 2.37e-02
10−1 10.8 12.0 953.9 1.41e-01

eig eigs tcheigs

Eigenvector Perturbations

ε IT EV max Ep

0 6.0 7.0 0
10−5 6.0 7.0 1.26e-04
10−4 6.0 7.0 9.19e-04
10−3 5.9 6.9 1.65e-02
10−2 5.9 6.9 2.87e-02
10−1 7.5 10.1 2.64e-01

ε IT EV MVP max Ep

0 6.0 7.0 533.0 0
10−5 6.0 7.0 533.0 4.67e-05
10−4 6.0 7.0 533.0 3.76e-04
10−3 5.9 6.9 527.2 1.65e-02
10−2 5.5 6.5 492.8 2.76e-02
10−1 9.1 11.8 923.4 2.67e-01

ε IT EV MVP max Ep

0 9.0 10.0 797.0 0
10−5 9.0 10.0 797.0 5.24e-05
10−4 9.0 10.0 797.0 6.04e-04
10−3 8.8 9.8 781.0 1.20e-02
10−2 7.4 8.4 671.5 4.88e-02
10−1 10.6 11.6 921.5 3.13e-01

eig eigs tcheigs

Table 7: Problem heat, severe. Performance results and maximum relative error in xp with respect to
xu.

C.2 Problem paris

Table 8 shows results for eigenvalue and eigenvector perturbations. For eigenvalues, the results correspond
to normal distribution and relative perturbations. For eigenvectors, the results correspond to uniform
distribution and absolute perturbations. The results are discussed in Section 4.3.3.

Eigenvalue Perturbations Eigenvector Perturbations

ε IT EV MVP max Ep

0 2.0 2.0 318.0 0
10−5 5.6 5.6 576.4 6.24e-02
10−4 6.1 6.1 608.5 7.35e-02
10−3 6.0 6.0 600.3 7.35e-02
10−2 6.5 6.5 636.4 7.62e-02
10−1 7.0 7.0 676.3 7.40e-02

ε IT EV MVP max Ep

0 2.0 2.0 318.0 0
10−5 2.6 2.6 357.8 6.29e-02
10−4 2.6 2.6 358.4 6.76e-02
10−3 3.2 3.2 407.3 7.80e-02
10−2 5.7 5.7 579.0 9.36e-02
10−1 7.3 7.3 695.3 1.27e-01

Table 8: Problem paris. Eigenvalue and eigenvector perturbations, eigensolver tcheigs. Performance
results and maximum relative error in xp with respect to xu.
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